Generalized Birch lemma and the 2-part of the Birch and Swinnerton-Dyer conjecture for certain elliptic curves
نویسندگان
چکیده
Abstract In the present paper, we generalize celebrated classical lemma of Birch and Heegner on quadratic twists elliptic curves over ℚ {{\mathbb{Q}}} . We prove existence explicit infinite families with analytic ranks 0 1 for a large class curves, use points to explicitly construct rational order rank 1. addition, show that these satisfy 2-part Swinnerton-Dyer conjecture when original curve does. also new result in direction Goldfeld conjecture.
منابع مشابه
Rank of Elliptic Curves and the Birch Swinnerton-dyer Conjecture
We numerically verify the Conjecture of Birch and SwinnertonDyer concerning the analytic and geometric rank of an elliptic curve. An algorithm (based on the work of Cremona) is developed in the PARI/GP language for computing the order of vanishing of the L-function for any (non-singular) curve. The analytic rank outputs for several families of curves are compared with readily available data on ...
متن کاملThe Birch-swinnerton-dyer Conjecture
We give a brief description of the Birch-Swinnerton-Dyer conjecture which is one of the seven Clay problems.
متن کاملThe Birch and Swinnerton-Dyer conjecture for Q-curves
Let N ≡ 1(mod 4) be a positive integer and let be the single even primitive quadratic Dirichlet character on (Z/NZ)×. Let f ∈ S2(Γ0(N), ) be a newform with nebentypus . By the Shimura construction, f corresponds to an abelian variety Af defined over Q whose dimension is [Kf : Q] where Kf is the number field associated with f . When dimAf = 2, the Fricke involution wN acts on Af and is defined o...
متن کاملThe conjecture of Birch and Swinnerton-Dyer
This essay starts by first explaining, for elliptic curves defined over Q, the statement of the conjecture of Birch and Swinnerton-Dyer. Alongside, it contains a discussion of some results that have been proved in the direction of the conjecture, such as the theorem of Kolyvagin-Gross-Zagier and the weak parity theorem of Tim and Vladimir Dokchitser. The second, third and fourth part of the ess...
متن کاملThe Birch and Swinnerton-Dyer Conjecture
A polynomial relation f(x, y) = 0 in two variables defines a curve C. If the coefficients of the polynomial are rational numbers then one can ask for solutions of the equation f(x, y) = 0 with x, y ∈ Q, in other words for rational points on the curve. If we consider a non-singular projective model C of the curve then over C it is classified by its genus. Mordell conjectured, and in 1983 Falting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Crelle's Journal
سال: 2021
ISSN: ['1435-5345', '0075-4102']
DOI: https://doi.org/10.1515/crelle-2021-0004